vendorify
diff --git a/go/vendor/github.com/shirou/gopsutil/internal/common/binary.go b/go/vendor/github.com/shirou/gopsutil/internal/common/binary.go
new file mode 100644
index 0000000..9b5dc55
--- /dev/null
+++ b/go/vendor/github.com/shirou/gopsutil/internal/common/binary.go
@@ -0,0 +1,634 @@
+package common
+
+// Copyright 2009 The Go Authors.  All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package binary implements simple translation between numbers and byte
+// sequences and encoding and decoding of varints.
+//
+// Numbers are translated by reading and writing fixed-size values.
+// A fixed-size value is either a fixed-size arithmetic
+// type (int8, uint8, int16, float32, complex64, ...)
+// or an array or struct containing only fixed-size values.
+//
+// The varint functions encode and decode single integer values using
+// a variable-length encoding; smaller values require fewer bytes.
+// For a specification, see
+// http://code.google.com/apis/protocolbuffers/docs/encoding.html.
+//
+// This package favors simplicity over efficiency. Clients that require
+// high-performance serialization, especially for large data structures,
+// should look at more advanced solutions such as the encoding/gob
+// package or protocol buffers.
+import (
+	"errors"
+	"io"
+	"math"
+	"reflect"
+)
+
+// A ByteOrder specifies how to convert byte sequences into
+// 16-, 32-, or 64-bit unsigned integers.
+type ByteOrder interface {
+	Uint16([]byte) uint16
+	Uint32([]byte) uint32
+	Uint64([]byte) uint64
+	PutUint16([]byte, uint16)
+	PutUint32([]byte, uint32)
+	PutUint64([]byte, uint64)
+	String() string
+}
+
+// LittleEndian is the little-endian implementation of ByteOrder.
+var LittleEndian littleEndian
+
+// BigEndian is the big-endian implementation of ByteOrder.
+var BigEndian bigEndian
+
+type littleEndian struct{}
+
+func (littleEndian) Uint16(b []byte) uint16 { return uint16(b[0]) | uint16(b[1])<<8 }
+
+func (littleEndian) PutUint16(b []byte, v uint16) {
+	b[0] = byte(v)
+	b[1] = byte(v >> 8)
+}
+
+func (littleEndian) Uint32(b []byte) uint32 {
+	return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
+}
+
+func (littleEndian) PutUint32(b []byte, v uint32) {
+	b[0] = byte(v)
+	b[1] = byte(v >> 8)
+	b[2] = byte(v >> 16)
+	b[3] = byte(v >> 24)
+}
+
+func (littleEndian) Uint64(b []byte) uint64 {
+	return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
+		uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
+}
+
+func (littleEndian) PutUint64(b []byte, v uint64) {
+	b[0] = byte(v)
+	b[1] = byte(v >> 8)
+	b[2] = byte(v >> 16)
+	b[3] = byte(v >> 24)
+	b[4] = byte(v >> 32)
+	b[5] = byte(v >> 40)
+	b[6] = byte(v >> 48)
+	b[7] = byte(v >> 56)
+}
+
+func (littleEndian) String() string { return "LittleEndian" }
+
+func (littleEndian) GoString() string { return "binary.LittleEndian" }
+
+type bigEndian struct{}
+
+func (bigEndian) Uint16(b []byte) uint16 { return uint16(b[1]) | uint16(b[0])<<8 }
+
+func (bigEndian) PutUint16(b []byte, v uint16) {
+	b[0] = byte(v >> 8)
+	b[1] = byte(v)
+}
+
+func (bigEndian) Uint32(b []byte) uint32 {
+	return uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
+}
+
+func (bigEndian) PutUint32(b []byte, v uint32) {
+	b[0] = byte(v >> 24)
+	b[1] = byte(v >> 16)
+	b[2] = byte(v >> 8)
+	b[3] = byte(v)
+}
+
+func (bigEndian) Uint64(b []byte) uint64 {
+	return uint64(b[7]) | uint64(b[6])<<8 | uint64(b[5])<<16 | uint64(b[4])<<24 |
+		uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56
+}
+
+func (bigEndian) PutUint64(b []byte, v uint64) {
+	b[0] = byte(v >> 56)
+	b[1] = byte(v >> 48)
+	b[2] = byte(v >> 40)
+	b[3] = byte(v >> 32)
+	b[4] = byte(v >> 24)
+	b[5] = byte(v >> 16)
+	b[6] = byte(v >> 8)
+	b[7] = byte(v)
+}
+
+func (bigEndian) String() string { return "BigEndian" }
+
+func (bigEndian) GoString() string { return "binary.BigEndian" }
+
+// Read reads structured binary data from r into data.
+// Data must be a pointer to a fixed-size value or a slice
+// of fixed-size values.
+// Bytes read from r are decoded using the specified byte order
+// and written to successive fields of the data.
+// When reading into structs, the field data for fields with
+// blank (_) field names is skipped; i.e., blank field names
+// may be used for padding.
+// When reading into a struct, all non-blank fields must be exported.
+func Read(r io.Reader, order ByteOrder, data interface{}) error {
+	// Fast path for basic types and slices.
+	if n := intDataSize(data); n != 0 {
+		var b [8]byte
+		var bs []byte
+		if n > len(b) {
+			bs = make([]byte, n)
+		} else {
+			bs = b[:n]
+		}
+		if _, err := io.ReadFull(r, bs); err != nil {
+			return err
+		}
+		switch data := data.(type) {
+		case *int8:
+			*data = int8(b[0])
+		case *uint8:
+			*data = b[0]
+		case *int16:
+			*data = int16(order.Uint16(bs))
+		case *uint16:
+			*data = order.Uint16(bs)
+		case *int32:
+			*data = int32(order.Uint32(bs))
+		case *uint32:
+			*data = order.Uint32(bs)
+		case *int64:
+			*data = int64(order.Uint64(bs))
+		case *uint64:
+			*data = order.Uint64(bs)
+		case []int8:
+			for i, x := range bs { // Easier to loop over the input for 8-bit values.
+				data[i] = int8(x)
+			}
+		case []uint8:
+			copy(data, bs)
+		case []int16:
+			for i := range data {
+				data[i] = int16(order.Uint16(bs[2*i:]))
+			}
+		case []uint16:
+			for i := range data {
+				data[i] = order.Uint16(bs[2*i:])
+			}
+		case []int32:
+			for i := range data {
+				data[i] = int32(order.Uint32(bs[4*i:]))
+			}
+		case []uint32:
+			for i := range data {
+				data[i] = order.Uint32(bs[4*i:])
+			}
+		case []int64:
+			for i := range data {
+				data[i] = int64(order.Uint64(bs[8*i:]))
+			}
+		case []uint64:
+			for i := range data {
+				data[i] = order.Uint64(bs[8*i:])
+			}
+		}
+		return nil
+	}
+
+	// Fallback to reflect-based decoding.
+	v := reflect.ValueOf(data)
+	size := -1
+	switch v.Kind() {
+	case reflect.Ptr:
+		v = v.Elem()
+		size = dataSize(v)
+	case reflect.Slice:
+		size = dataSize(v)
+	}
+	if size < 0 {
+		return errors.New("binary.Read: invalid type " + reflect.TypeOf(data).String())
+	}
+	d := &decoder{order: order, buf: make([]byte, size)}
+	if _, err := io.ReadFull(r, d.buf); err != nil {
+		return err
+	}
+	d.value(v)
+	return nil
+}
+
+// Write writes the binary representation of data into w.
+// Data must be a fixed-size value or a slice of fixed-size
+// values, or a pointer to such data.
+// Bytes written to w are encoded using the specified byte order
+// and read from successive fields of the data.
+// When writing structs, zero values are written for fields
+// with blank (_) field names.
+func Write(w io.Writer, order ByteOrder, data interface{}) error {
+	// Fast path for basic types and slices.
+	if n := intDataSize(data); n != 0 {
+		var b [8]byte
+		var bs []byte
+		if n > len(b) {
+			bs = make([]byte, n)
+		} else {
+			bs = b[:n]
+		}
+		switch v := data.(type) {
+		case *int8:
+			bs = b[:1]
+			b[0] = byte(*v)
+		case int8:
+			bs = b[:1]
+			b[0] = byte(v)
+		case []int8:
+			for i, x := range v {
+				bs[i] = byte(x)
+			}
+		case *uint8:
+			bs = b[:1]
+			b[0] = *v
+		case uint8:
+			bs = b[:1]
+			b[0] = byte(v)
+		case []uint8:
+			bs = v
+		case *int16:
+			bs = b[:2]
+			order.PutUint16(bs, uint16(*v))
+		case int16:
+			bs = b[:2]
+			order.PutUint16(bs, uint16(v))
+		case []int16:
+			for i, x := range v {
+				order.PutUint16(bs[2*i:], uint16(x))
+			}
+		case *uint16:
+			bs = b[:2]
+			order.PutUint16(bs, *v)
+		case uint16:
+			bs = b[:2]
+			order.PutUint16(bs, v)
+		case []uint16:
+			for i, x := range v {
+				order.PutUint16(bs[2*i:], x)
+			}
+		case *int32:
+			bs = b[:4]
+			order.PutUint32(bs, uint32(*v))
+		case int32:
+			bs = b[:4]
+			order.PutUint32(bs, uint32(v))
+		case []int32:
+			for i, x := range v {
+				order.PutUint32(bs[4*i:], uint32(x))
+			}
+		case *uint32:
+			bs = b[:4]
+			order.PutUint32(bs, *v)
+		case uint32:
+			bs = b[:4]
+			order.PutUint32(bs, v)
+		case []uint32:
+			for i, x := range v {
+				order.PutUint32(bs[4*i:], x)
+			}
+		case *int64:
+			bs = b[:8]
+			order.PutUint64(bs, uint64(*v))
+		case int64:
+			bs = b[:8]
+			order.PutUint64(bs, uint64(v))
+		case []int64:
+			for i, x := range v {
+				order.PutUint64(bs[8*i:], uint64(x))
+			}
+		case *uint64:
+			bs = b[:8]
+			order.PutUint64(bs, *v)
+		case uint64:
+			bs = b[:8]
+			order.PutUint64(bs, v)
+		case []uint64:
+			for i, x := range v {
+				order.PutUint64(bs[8*i:], x)
+			}
+		}
+		_, err := w.Write(bs)
+		return err
+	}
+
+	// Fallback to reflect-based encoding.
+	v := reflect.Indirect(reflect.ValueOf(data))
+	size := dataSize(v)
+	if size < 0 {
+		return errors.New("binary.Write: invalid type " + reflect.TypeOf(data).String())
+	}
+	buf := make([]byte, size)
+	e := &encoder{order: order, buf: buf}
+	e.value(v)
+	_, err := w.Write(buf)
+	return err
+}
+
+// Size returns how many bytes Write would generate to encode the value v, which
+// must be a fixed-size value or a slice of fixed-size values, or a pointer to such data.
+// If v is neither of these, Size returns -1.
+func Size(v interface{}) int {
+	return dataSize(reflect.Indirect(reflect.ValueOf(v)))
+}
+
+// dataSize returns the number of bytes the actual data represented by v occupies in memory.
+// For compound structures, it sums the sizes of the elements. Thus, for instance, for a slice
+// it returns the length of the slice times the element size and does not count the memory
+// occupied by the header. If the type of v is not acceptable, dataSize returns -1.
+func dataSize(v reflect.Value) int {
+	if v.Kind() == reflect.Slice {
+		if s := sizeof(v.Type().Elem()); s >= 0 {
+			return s * v.Len()
+		}
+		return -1
+	}
+	return sizeof(v.Type())
+}
+
+// sizeof returns the size >= 0 of variables for the given type or -1 if the type is not acceptable.
+func sizeof(t reflect.Type) int {
+	switch t.Kind() {
+	case reflect.Array:
+		if s := sizeof(t.Elem()); s >= 0 {
+			return s * t.Len()
+		}
+
+	case reflect.Struct:
+		sum := 0
+		for i, n := 0, t.NumField(); i < n; i++ {
+			s := sizeof(t.Field(i).Type)
+			if s < 0 {
+				return -1
+			}
+			sum += s
+		}
+		return sum
+
+	case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64,
+		reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
+		reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128, reflect.Ptr:
+		return int(t.Size())
+	}
+
+	return -1
+}
+
+type coder struct {
+	order ByteOrder
+	buf   []byte
+}
+
+type decoder coder
+type encoder coder
+
+func (d *decoder) uint8() uint8 {
+	x := d.buf[0]
+	d.buf = d.buf[1:]
+	return x
+}
+
+func (e *encoder) uint8(x uint8) {
+	e.buf[0] = x
+	e.buf = e.buf[1:]
+}
+
+func (d *decoder) uint16() uint16 {
+	x := d.order.Uint16(d.buf[0:2])
+	d.buf = d.buf[2:]
+	return x
+}
+
+func (e *encoder) uint16(x uint16) {
+	e.order.PutUint16(e.buf[0:2], x)
+	e.buf = e.buf[2:]
+}
+
+func (d *decoder) uint32() uint32 {
+	x := d.order.Uint32(d.buf[0:4])
+	d.buf = d.buf[4:]
+	return x
+}
+
+func (e *encoder) uint32(x uint32) {
+	e.order.PutUint32(e.buf[0:4], x)
+	e.buf = e.buf[4:]
+}
+
+func (d *decoder) uint64() uint64 {
+	x := d.order.Uint64(d.buf[0:8])
+	d.buf = d.buf[8:]
+	return x
+}
+
+func (e *encoder) uint64(x uint64) {
+	e.order.PutUint64(e.buf[0:8], x)
+	e.buf = e.buf[8:]
+}
+
+func (d *decoder) int8() int8 { return int8(d.uint8()) }
+
+func (e *encoder) int8(x int8) { e.uint8(uint8(x)) }
+
+func (d *decoder) int16() int16 { return int16(d.uint16()) }
+
+func (e *encoder) int16(x int16) { e.uint16(uint16(x)) }
+
+func (d *decoder) int32() int32 { return int32(d.uint32()) }
+
+func (e *encoder) int32(x int32) { e.uint32(uint32(x)) }
+
+func (d *decoder) int64() int64 { return int64(d.uint64()) }
+
+func (e *encoder) int64(x int64) { e.uint64(uint64(x)) }
+
+func (d *decoder) value(v reflect.Value) {
+	switch v.Kind() {
+	case reflect.Array:
+		l := v.Len()
+		for i := 0; i < l; i++ {
+			d.value(v.Index(i))
+		}
+
+	case reflect.Struct:
+		t := v.Type()
+		l := v.NumField()
+		for i := 0; i < l; i++ {
+			// Note: Calling v.CanSet() below is an optimization.
+			// It would be sufficient to check the field name,
+			// but creating the StructField info for each field is
+			// costly (run "go test -bench=ReadStruct" and compare
+			// results when making changes to this code).
+			if v := v.Field(i); v.CanSet() || t.Field(i).Name != "_" {
+				d.value(v)
+			} else {
+				d.skip(v)
+			}
+		}
+
+	case reflect.Slice:
+		l := v.Len()
+		for i := 0; i < l; i++ {
+			d.value(v.Index(i))
+		}
+
+	case reflect.Int8:
+		v.SetInt(int64(d.int8()))
+	case reflect.Int16:
+		v.SetInt(int64(d.int16()))
+	case reflect.Int32:
+		v.SetInt(int64(d.int32()))
+	case reflect.Int64:
+		v.SetInt(d.int64())
+
+	case reflect.Uint8:
+		v.SetUint(uint64(d.uint8()))
+	case reflect.Uint16:
+		v.SetUint(uint64(d.uint16()))
+	case reflect.Uint32:
+		v.SetUint(uint64(d.uint32()))
+	case reflect.Uint64:
+		v.SetUint(d.uint64())
+
+	case reflect.Float32:
+		v.SetFloat(float64(math.Float32frombits(d.uint32())))
+	case reflect.Float64:
+		v.SetFloat(math.Float64frombits(d.uint64()))
+
+	case reflect.Complex64:
+		v.SetComplex(complex(
+			float64(math.Float32frombits(d.uint32())),
+			float64(math.Float32frombits(d.uint32())),
+		))
+	case reflect.Complex128:
+		v.SetComplex(complex(
+			math.Float64frombits(d.uint64()),
+			math.Float64frombits(d.uint64()),
+		))
+	}
+}
+
+func (e *encoder) value(v reflect.Value) {
+	switch v.Kind() {
+	case reflect.Array:
+		l := v.Len()
+		for i := 0; i < l; i++ {
+			e.value(v.Index(i))
+		}
+
+	case reflect.Struct:
+		t := v.Type()
+		l := v.NumField()
+		for i := 0; i < l; i++ {
+			// see comment for corresponding code in decoder.value()
+			if v := v.Field(i); v.CanSet() || t.Field(i).Name != "_" {
+				e.value(v)
+			} else {
+				e.skip(v)
+			}
+		}
+
+	case reflect.Slice:
+		l := v.Len()
+		for i := 0; i < l; i++ {
+			e.value(v.Index(i))
+		}
+
+	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
+		switch v.Type().Kind() {
+		case reflect.Int8:
+			e.int8(int8(v.Int()))
+		case reflect.Int16:
+			e.int16(int16(v.Int()))
+		case reflect.Int32:
+			e.int32(int32(v.Int()))
+		case reflect.Int64:
+			e.int64(v.Int())
+		}
+
+	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
+		switch v.Type().Kind() {
+		case reflect.Uint8:
+			e.uint8(uint8(v.Uint()))
+		case reflect.Uint16:
+			e.uint16(uint16(v.Uint()))
+		case reflect.Uint32:
+			e.uint32(uint32(v.Uint()))
+		case reflect.Uint64:
+			e.uint64(v.Uint())
+		}
+
+	case reflect.Float32, reflect.Float64:
+		switch v.Type().Kind() {
+		case reflect.Float32:
+			e.uint32(math.Float32bits(float32(v.Float())))
+		case reflect.Float64:
+			e.uint64(math.Float64bits(v.Float()))
+		}
+
+	case reflect.Complex64, reflect.Complex128:
+		switch v.Type().Kind() {
+		case reflect.Complex64:
+			x := v.Complex()
+			e.uint32(math.Float32bits(float32(real(x))))
+			e.uint32(math.Float32bits(float32(imag(x))))
+		case reflect.Complex128:
+			x := v.Complex()
+			e.uint64(math.Float64bits(real(x)))
+			e.uint64(math.Float64bits(imag(x)))
+		}
+	}
+}
+
+func (d *decoder) skip(v reflect.Value) {
+	d.buf = d.buf[dataSize(v):]
+}
+
+func (e *encoder) skip(v reflect.Value) {
+	n := dataSize(v)
+	for i := range e.buf[0:n] {
+		e.buf[i] = 0
+	}
+	e.buf = e.buf[n:]
+}
+
+// intDataSize returns the size of the data required to represent the data when encoded.
+// It returns zero if the type cannot be implemented by the fast path in Read or Write.
+func intDataSize(data interface{}) int {
+	switch data := data.(type) {
+	case int8, *int8, *uint8:
+		return 1
+	case []int8:
+		return len(data)
+	case []uint8:
+		return len(data)
+	case int16, *int16, *uint16:
+		return 2
+	case []int16:
+		return 2 * len(data)
+	case []uint16:
+		return 2 * len(data)
+	case int32, *int32, *uint32:
+		return 4
+	case []int32:
+		return 4 * len(data)
+	case []uint32:
+		return 4 * len(data)
+	case int64, *int64, *uint64:
+		return 8
+	case []int64:
+		return 8 * len(data)
+	case []uint64:
+		return 8 * len(data)
+	}
+	return 0
+}